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2L Accclretor Beam Signals Outline
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» Delta functions
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* Accelerator

DL Division Single Bunch in a Circular Ring
N, particles in
a bunch
5
% Tr'ev
@)
Resistive Wall
Monitor R
Time

Bunch shape = f(t) where If(tht =1

ib(t): inbf(t_ nTrev)

N=—00

Introduction to RF - Part 3 - Beam Signals - McGinnis



* Accelerator

DE Division Fourier Series
ib(t): ZqNbf(t — nTrev)
N=—00

This is a periodic series which can be expanded in a Fourier series

00 .
()= 3 Celmorev

M=—0o0
where
2T

WOray = —T
rev
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* Accelerator

# Division FOUI"ICF’ Ser'leS
N o
Ch= f:_—b j f(r)e IMerevids
"V Trey /2
Note:

C, is the DC beam Current

N
c, = N
Trev
f(1) is a real function
Cm= C?n
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-""E__ Accelerator Fourier Transforms

Fourier Transform

(t)= [ T(2nf it :i [T(w)®do

Inverse Fourier Transform
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-"tq = Aocclerator Detour on Delta functions
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*‘,_- Accele @ Fourier Transform of the Beam Current

Tolo)= Jip(ee e

00 .
ib(t) _ Z Cmelmﬂ)revt

M=—0o0

~

b(@)=27 3 Cond(0— ey

M=—00
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*q‘_- Accele @ Fourier Transform of the Beam Current

But spectrum analyzers do not measure currents and voltages.
They measure POWER deposited into a filter of width df

The total power into the spectrum analyzer
(p(t)) = [S(2nf )af

S(2nf) is the power spectral density and is the power measured
by the spectrum analyzer in a resolution bandwidth of 1 Hz
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*‘,_- Accele @ Fourier Transform of the Beam Current

1 T/2
Time Averaged Power <p(t)>: lim =R Ii(t).i(’[)dt
T—>o0
-T/2
Since:
L (e
(0= [T
and i(t) is real
B e
05 [Tk a0
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* Accelerator

DE Division Power Spectral Density
1 T/2 1 o o 1 ©_ -
(p(t)) = lim =R | [E | Ty )1 dmlj-[z—n [ 17 (wp)e712 da)zjdt
—T/2 —00 —00
Twizzle, Twazzle....
o0
1~ d(o
t)) = lim —|I
<p( )> _OOT—>ooT ( )( 2

o1~ 2
Slo)= lIm —|I R
((D) Tl—r>nooT ((D)(
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E oveion Beam Power Spectrum

Tb ((D) =27 i CmS(@_ ODrev)

M =—00

Sp(@)=_lim _(Zn) Z ZC Crnd(0 — Mgy J5(00— M’ ey

T T M=—com'=
Since delta functions do not overlap formzm

Sp()=_lim — 2%) > [Conf? (6~ mayey )

T—oo0 M=—o0
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E oveion Beam Power Spectrum

Some more delta function magic...

1 1 1 T/2

'I'Ii—l;noo T (8(c0—Madpey ))* = Tll—r)noo T 3(0—Mayey )_TC __I:"/ezj(w—mﬁ)rev Yot

1
= o 5((’0 - m(Drev)
T

Sp(@)=27R ¥|Cml|*8(c0— Meorey )

M=—00

Sb(f): R Z‘Cm‘ZS(f ~ mfrev)

N=—00
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E oveion Beam Power Spectrum

Since spectrum analyzers can't distinguish between negative
and positive frequencies:

Sp ()= (q'\'_bjst(oﬁ 2R i\cm\zs(f —mf gy )

TI’EV

m=1
S, (f) 2RICF 2R[C,F  2R|C4f 2R|C,4|*
R|Colf ‘ I | l
fr'ev 2'Fr'ev 3'Fr'ev 4fr'ev Fl“eq.
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E oveion Beam Power Spectrum

The power contained in each revolution IiBe:

PO=R£qN—bj m=0

TTEV
2 m>0
Pm =2R|Cp|
Note that if:
Short Bunch Long Bunch
f(t)=5(t) f(t)=——(1+cos(2nf e t))
N 2 rev
P =2R| TNb 1 (N Y
Trev PL=—R
2\ Trey

Pm =0 m > 1
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g poceera Bunch Length Monitor

Consider a square bunch with length t,

[l/rb

The power in spectral line m:

Pm = ZPOSa(mnT—bj
Trev
sin(x)
Sa(x)=
a(x)=
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g poceera Bunch Length Monitor

The ratio of the power in line n o the power in line m is
independent of the beam intensity and is a function of the

bunch length.

a1
~
%TO75
T =2 U197
Sa| nt—P2—| &
Pn _ Trev s 0.5
5= :
T o !
m Sal mm b 0.25
Trev

0 0.15 0.3
Fractional Bunch Length
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Q& e M Equally Spaced Bunches in a Ring

, particles in
a bunch
] Trev
Resistive Wall M
Monitor

Time
This looks exactly like 1

bunch in a machine M times
smaller

Current
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# Aocelerator M Equally Spaced Bunches in a Ring

ib(t) _ i Cmejm(|\/|00rev)t

M =—00
Trev /2 _
Cpy = TqNb J' f(T)e—l'fn(“/'ﬁorev)’CdT
UM ~Trev /2

Note that all the coefficients are M times bigger than for a
single bunch. More bunches - more power.
For Example:

Co=MIND
Trev

Which is still the total DC current in the ring
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* Accelerator

RE Division M Equally Spaced Bunches in a Ring
ﬂ ﬂ
5 Trev Tb .
% ) Trev
JL MJHHHH
Time Freq.
Trev
H] (I | L | W T':V
mmmmj

Tihe

Fregq.

Introduction to RF - Part 3 - Beam Signals - McGinnis 20



RS pcoslerair A Burst of Bunches in a Ring

M bunches
separated by
T./h

Resistive Wall
Monitor

Ul JUUUL

Tir'ne
|
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RS pcoslerair A Burst of Bunches in a Ring

i

m
i(+) §
nin
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S Time
3 = B() X
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Time g
5
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Tir:ne |
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# Aocclerator A Burst of Bunches in a Ring

Trev /2 .
J' f(T)e—Jm(h(Drev )Tdr

rev —Trev /2

Np

S imM g
Alt)= ZCmeJm( Orey )t Cm=h2

M =—00

|
0 5 10 15 20 25 30 35 40 45 50
| .
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I e
e Do Betatron Motion
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* Accelerator

L Division Betatron Motion
Image current collected on the pickup plates
p 2y I 2yj
| 1+ |, =-0[|1-2L
U~ 2( dj L 2( d
VA =ﬁ(|u ~11)=21pZo %
J2 0

Ideal power combiner —

For a single particle in the ring:

(0= 3 5(t-nTye,)

N=—0o0

Z:ejn(ﬂrevt
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I e
-V g?\;:if)}:\ator Betatron Motion

For a particle going through betatron oscillations

Y=Yco TYB COS(Q(Drevt + (I)B)

where Q is the tune
¢4 is the starting phase of the betatron oscillation
Y. IS The closed orbit position

V) =27, > (yﬂ glN@rev! +>;|—Bej”‘”revt cos(Quyeyt + dp )j

e1revt cos(Quopeyt + (I’B): %ej% eJn+Qoret Jr%e_jd)B eln-Qloreyt
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It = Acosersto Betatron Oscillations

N=—00
2 2
1[0 B S s
+2£Trev) Zo[ dj n;j(f (n Q)frev
2 2
1[0 B S s
+2£Trev] Zo( d] n;j(f (n+Q)frev
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It = Acosersto Betatron Oscillations

tt 1t
f 2

rev f rev

f ' 3 Fregq.

f rev

n-Q  line for fract Q < 0.5 n+Q line for fract Q < 0.5
n-1+Q line for fract Q > 0.5 n+1-Q line for fract Q > 0.5

From one pickup, you cannot distinguish the integer part of the

Tune.
You also cannot tell if the tune is greater or less than 0.5

L _______________________________________________________________________________________________________________________________________________|
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RS pcoslerair AM Modulation

Betatron oscillations has the same spectrum as Amplitude
Modulation (AM)

v(t) =V, (1+mcos(omt))cos(mgt)

®,, is the modulation frequency
o, is the carrier frequency
m is the modulation amplitude

Using the trig identity
cos(a +B) = cos(a)cos(B)—sin(a )sin(p)

mV,

v(t) = V, cos(egt)+ m;/o cos((g + o )+ V0 cos((@ — o )1t)
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RS pcoslerair AM Modulation

v(t) =V, (1+mcos(omt))cos(mgt)

v(t) =V, cos(ogt)+ m;/" cos((mg + oy Jt)+

5(f)

m2/4 . “ >
T t Fregq.
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RS roccierao Longitudinal Motion

A single particle undergoes synchrotron oscillations ¢,

s
Op
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* | . . .
aE Brvion Longitudinal Motion

The particle’s longitudinal position can be described by an
azimuthal phase around the ring. The particle traverses 2x
radians in one trip around the ring.

D (9)=qoorey i 5(¢ — 2nm)

N=—o0

This is a periodic function which can be expanded in a Fourier
series:

ip )_ﬁ?ﬂ_ zz NW)
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* | . . .
aE Brvion Longitudinal Motion

But the longitudinal phase is a function of fime which includes
the time dependence of synchrotron oscillations

O = Opeyt + O Sin(Qst + ocs)

Where ¢, is the synchrotron oscillation amplitude,
Q. is the synchrotron frequency
o, is the starting synchrotron phase

alNoreyts INEs sin(Qgt+oasg)

M8

i (t) = ——

Trev 1

—00
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2L Aoocleratr Bessel Function Magic

The complex exponential of a sine function can be "simplified”
by using Bessel func’rions

estm Z‘] ( me

N/

R S e
\\>< S <
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o
=
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o
o
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J2
J3
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# Accelerator Longitudinal Spectrum

ip(t) -1 i i‘]m (n(pS )ejmo‘s ej(”@rev+sz )t

Trev N=—00 M=—00

N Ak Jo(nds)

‘I ‘ b‘

b 1 Jl(nd)s)

1__

| fs
0.751 | ) J2(nd,)
‘ J.3(n¢s)
057 f 1
n rev
0.251
i
0 1 2
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I .
2E oo Frequency Modulation

Longitudinal oscillations has the same spectrum as frequency or
phase modulation (FM or PM)

®W=0O; +On Cos(oost)

o, is the modulation frequency
o, is the carrier frequency
o, IS the modulation amplitude

do _
dt

®

¢ = ot + M sin(wgt)
Ws
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I .
E oveon Frequency Modulation

v(t)=cos| gt + m—msin(mst)j
Ws
o0

)= 3 3a[ 22 oo+ mos

N=—0o0

v
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# Accelerator Multipole Distributions

The current for a single particle with synchrotron amplitude ¢,
and phase a is:

ip((PS’OLS’t):Ti Z ZJm(n(PSkijCSej(n(DreV—l-mQS)t

€V n=—co m=—co

What about a collection of particles in longitudinal phase space.

"

Each particle has a polar phase
space coordinates radius r,
angle a

A

Introduction to RF - Part 3 - Beam Signals - McGinnis 38



# Accelerator Multipole Distributions

The density in phase space must be periodic in o with a period

of 2m
w(ro)=f(r) D crel

K=—00

The number of particles in phase space is given by:

Np =Co jf(r)andr
0

Also since y(r,a) must be real:
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# Accelerator Multipole Distributions

The different values of k are multipoles. The multipoles spin
around the origin at a the synchrotron frequency.

Monopole:

Quadrupole: k = 2

- @
poles k=1 ..3 s
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# Accelerator Multipole Distributions

Monopole:

00000

VA

Time projection

S
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# Accelerator Multipole Distributions

Monopole: k=0

Time projection
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# Accelerator Multipole Distributions

The total current is found by integrating the contribution of
each particle in phase space.

© 2T
= [rdr [y(r,a)ip(r, 0. t)do
0 0

= (®rey Z ZFk CkeJ (norey +kOs )

N=—o0 K=—o0

Where F,(n) is a frequency form factor

R (n)= oka(nr)f(r)rdr

0
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# Accelerator Multipole Distributions

Each synchrotron line in the spectrum corresponds to a
different multipole mode oscillation

Monopole

Dipole

Quadrapole
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